
CR-189392

NASA
EOS Testbed System

Project Number 5555-07

Final 1994 Report
/ 4, - ,S-,/

.J

/ s5

Principle Investigator: William Emery
University of Colorado
Aerospace Engineering

Boulder, Colorado

September 6, 1994

(NASA-CR-I89392) A LAND-SURFACE

TESTBEO FOR EOSOIS Final Report,

i994 (Colorado Univ.) 55 p

N95-I7327

Unclas

G3/6I 0033945

History

The downloading and archival of satellite data is not new. There are several

thousand downloading and archive sites throughout the world. The newest of these

archival sites is the EOS Testbed system (data system) which allows for an archive

site to use low cost storage devices and software to archive and transport data to

end usersoverthe Interact.

The data system startedin 1991 from a National Aeronautics and Space

Administration (NASA) grant to provide satelliteimages to end users via the

Internct.The originalproposal was to use Macintosh computers and to deliver

prcprocessedimages of520 by 520 pixelscenteredover Colorado. These images

were of allfivechannels (.03 through 12.8mhz bands);channel I and 2 being the

visiblechannels,channel 3 the nearlyvisiblenearlyinfrared,and channels4 and 5

being strictlyinfrared. These images were processed from data suppliedby the

NationalOceanography and Atmospheric Administration(NOAA) polarorbiting

satellites,NOAA's 9, 1I,and 12.

The postprocessingof the datawas conducted by the Colorado Center for

Astrodynamic Research (CCAR) using apostlaunchnavigationsoftwaredeveloped

at the Universityof Colorado and the NationalCenter for Atmospheric Research

(NCAR) (Emery, Baldwin, Rosbrough, 1991). This softwarewould geo-register

the data to a prearranged map projectionand centerlatitudeand longitudepoint.

The range of the image was set to 5.0 degrees (2.5 degrees from the center point) to

set the resolution of the image to its maximum (1 km per pixel at nadir).

Images were processedon a dailybasisand thenwere transmittedusingthe

Interact to NCAR and stored on the Mass Storage device (StorageTek 660). The

number of images processed ranged from three to four passes per day from1989 to

1991. Though each individual image was small in storage size, the volume became

quite large as new images were added to the existing file directory on a daffy basis.

At this time, we had no users of the system nor did we have a system that

would deliver the images to the end user. It became appa_,'ent that a Macintosh

would not be compatible with operations on the StorageTek 660 nor would it be

able to work as a gateway server to the outside world. For these reasons it was

decided to purchase a Digital Equipment Corp. Dec5000. In 1991, this was one of

the fastest workstations and could be used as a gateway server as well as a

communication device to the StorageTek 660.

The original system design was very simple. The system would catalog the

images in a simple scroLled window. The user then could pick by name the image

or images he or she wanted and the Dec5000 would make a caLl to the StorageTck

660 to retrieve the image. Once an image was returned to the Dec5000, it would

place the image in an anonymous File Transfer Protocol (FTP) directory for the end

user to pick-up. This setup worked fine when we had only a handful of users, but

as end users began to grow the single FTP directory was becoming cluttered with

hundreds of images and users were becoming confused about which images

belonged to them.

It became apparent that the system would need to track the end users name

and the image f'des selected and place the images into a new ftp directory that would

be named after the user. This was not a simple task. The StorageTck 660 uses a

software protocol called the MASnct/Internet Gateway Server (Migs). Migs relies

on a string of default variables and returns a sequence number for each request

whether the request is successful or fails. Since the request comes from a machine

and not a user the StorageTek 660 does not know who ordered a request. Once an

order has been processed, the StorageTek 660 sends a mail message to the ordering

machine on the status of the request. Parsing a mail message becomes quite

complex and must work as follows:

The gateway computer allows a user to login. The user must type in his or

her name. This information is parsed into a file and stored. The user makes an

order or orders and these individual orders are given a sequence number. These

numbers are then parsed into the same file as the users name. Now the gateway

computer knows the fries ordered the name of the f'rie, and the user name. As files

are returned to the gateway computer, the sequence number is parsed from the mail

message along with the filename. The gateway computer then renames the file to

the correct name and places the image file or fries into a directory the computer

creates for the user under his or her name.

This architecture allowed end users to pick up only the images they had

ordered. Users quickly learned they could order several images (in some cases

several hundred images) and later pick up what images they felt were useful. This

lead to the expansion of the anonymous ftp drive fi'om one gigabyte to 4 gigabytes.

After contacting end users we found that the reason they were ordering so many

images was because they had no idea of whether the image had cloud or whether it

was clear. Subsequently, they would order all the images and sort through them at

a later time. What was lacking was a way of seeing exactly what you were ordering

before you place the MIGS command.

Browsing by image name was not enough. End users needed to be able to

view an image before it was ordered. This request lead to the visual browse of the

images. To my knowledge we are the fast to create on-line visual browse of

AVHRR images. This was an even more complex task than the parsing of the

sequence mail messages as described above.

The gateway computer would need to use a language that would be able to

transmit an image over the Internet and display that image on the end user's

computer. Motif Xwindows was chosen to perform this task. Xwindows would

allow for the capture of an image and the placement of it within a window widget

called a bulletin board widget. With the image captured, it could then be transmitted

within the widget and displayed on any computer being serviced by Motif or Open

windows.

All display widgets use a colortable (colortable being the pixels color values

using the Red, Green, Blue matix and being scaled from 0 to 254). This colortable

must be created each time an image is displayed. Because a colortable can be

altered for specific needs or display purposes we found that a colortable had to be

created as a default to support the browse images. What this means is, if the users

computer did not support a colortable that would display the browse image, the

gateway computer would first send a default colortable to allow the end user to

view the browse image (Figure 1).

With the feature of on-line browse the amount of non essential mass store

retrievals dropped. What developed next was that the area coverage was not large

enough for many users. We found that users now wanted areas that were not

within our preprocessed image sizes. It was determined that we would start

processing larger images to include coverage over the west coast. Increasing the

image size increased the volume of data that was transmitted back to the end user.

Once an image was delivered to the end user he or she would then crop the section

of the image that they needed and discarded the rest. Pressure from end users lead

to the final system (navigate) which was designed to allow the end user to geo-

register his or her own image in the zone of coverage, and the type of resolution

and map projection that would best suit their needs.

Phase 1 Navigate System

It was determined that the navigate system would use our existing

navigation program and have Xwindow interface to build the command line that

would geo-register the images (Figure 2). Since the navigation code had never

beendevelopedto geo-register several images at once, the data system would need

to be modified to spawn off a child to wait until a file was returned from the

StorageTek 660 to navigate the image or images. Prior to this time, all of the files

on the StorageTek 660 were preprocessed images. Now it would be necessary to

store a full AVHRR data pass of 130 megabytes each on the StorageTek 660. This

type of data had been arc:hived from late 1989 and required several months to be

placed on-line using the StorageTek 660. When an order was placed, the

Xwindow display windows would spawn a child to hold the command line in

active memory. This process would contain information on how to geo-register

the images, the user name and the delivery file directory. The command to return a

file from the StorageTek 660 went through the MIGS gateway computer, where the

statusof therequestwould be assigned.This firstdesignreliedon the StorageTek

660 as the file storage device. Because of access problems and time constraints, the

f'trst phase on navigate never worked correctly. The StorageTek 660 would deliver

less than 50% of the files on time. Before the navigate system, it did not matter if

the files took several minutes or even several hours to return. The intermittent

delivery time of the data files caused serious problems in the navigate system.

When files were not returned in a reasonable period of time, the navigate system

would keep spooling the navigate command in memory. This spooling would

continue to build until the computers memory was full and cause the computer to

crash. By setting a time-out to the spooling process, meant if a data file did not

return on time the process was stopped. Either of the above cases meant users were

not getting their images. Since we were using the StorageTek 660 for free we were

not a high priority of NCAR to service our needs. We had several meetings with

NCAR and it was determined that a test would be run to find out exactly how long

it was taking to return a single file. After a week of testing, it was determined that

the average file took between 25 and 35 minutes to be returned to the gateway

computer.This timeconstraintwasmuchtoo long. Memory processes could not

be spooled this length of time and not become corrupt. This lead to the navigate

system not making any calls to the StorageTek 660 and allowed end users access to

only current passes that were updated daily. Complaints about the lack of past data

and the data system having no control over the NCAR equipment lead to phase 2 of

the navigate system.

Phase 2 Navigate II

Navigate 11was developed from allthe informationthathad been gathered

from the previous years of work and research. The new system would have it's

own storagedevice, trackit'sown filesand tapes,allow sortson thedata priorto

ordering and would have a windowing design thatwould simplify allof the

complex operationsthatarehidden from theuser.

Hardware Design

The first phase of navigate used Digital DEC Station 5000 to be the gateway

computer. This system was extremely reliable in its hardware. For this, DEC was

again approached to find a machine that would have extensive I/O operations and

be able to still allow file transfers while being hammered by internal jobs. From all

machines that were proposed, it came to our attention that the new DEC Alphas

were going to be the best choice for our needs.

The original machine that was offered was a Digital DEC Station 30001400

(a mid range Alpha). Our original plans were to use one high speed machine to

operate both the data storage system as well as navigate the images. By testing the

navigation program on a loaner Alpha, we found that the navigation code would

take several minutes and would need to be executed on a separate machine. This

expanded and complicated the system design in that now two machines would need

to work as one.

Again, Digital was contacted on our current design and the use of a Turbo

Channel connection was advised to allow the two computers to be hardwired to

each other and work as one. The Turbo Channel proved to be a dismal

disappointment in that it was only two ethernet cards that would allow

communications between two machines that were not connected via the Intemet. It

was later discovered that the Turbo Channel could be made to work as we intended

but we would need a special router and the cost of the router was half the price of a

new DEC Alpha.

Our previous work with navigate showed us that we would need a disk

farm to hold and transfer data. Western Scien_"ic had high speed drives that could

accept our data at rates above 5 megabytes per second. This speed would allow a

data f'tle to be transferred from tape to drive in less than 5 minutes. The drives

selected were two 8 gigabyte drives. The 16 gigabytes would allow us to offer

more files and allow more users to access the system without complications.

Now with the driver and storage requirements completed, it was time to

define our needs for a storage device. Our AVHRR passes are on average, 130

megabytes in size and we archive three to four passes per day. It became quite

apparent that we would need to archive by 1994, one full terabyte of data. This size

requirement immediately eliminated a great deal of the storage systems.

Research into storage devices showed that we would need to purchase equipment

and software that was ranging from $50,000 to $150,000 US. to immolate the

StorageTek 660. This cost structure was far beyond the budget requirements.

After an extensive search, the three final choices became: the 4ram Dat

drive, a read write CD-ROM and the Exabyte 120i 8ram tape system. All of our

data was currently being stored on Exabyte 8ram tape and using a 4ram Dat system

would mean that all data would need to be rewritten, and tapes could not be shared

with the current lab drives. At the time of procurement, the 4mm Dats did not have

the final storage requirement of a full terabyte. Read write CD-ROM is useful when

the fries are exactly the same size and all of the data is ready to write at a single

time. This system was not viable for our needs in that we would need to stott data

until we had exactly enough to f'ril a CD and then write the CD. With current

SONY read write CDROMs you can write several times to a CD but the cost again

is prohibitive for our project.

The Exabyte 120i was chosen as the medium for our data storage system.

The 120i offered many flexibility's we needed. First, the 120i uses four Exabyte

drives giving us the abiLity to [read, read, read, read] or [write, write, write, write]

or any combination of the above. This would allow us to serve several users within

a short period of time. The 120i, using the Exabyte 8500C compression drives,

will hold over one terabyte on its 120 tapes (note 116 slots within the 120i and 4

tapes in the drives).

Unfortunately, the 120i with all of its hardware capabilities did not use any

type of driver software to actuate the robotics arm in the fashion that we would

need. At this time, Exabyte was approached and manuals were supplied explaining

the hardware operations of the 120i and the 8500C drives. From this point, it

became apparent that driver software would have to be developed fi'om scratch and

implemented onto our DEC Alphas to run the meteorological data archive system

(MDAS).

Software Design

Meteorological Data Archive Software

By researching software packages to run our data storage system we found

that there was a lot of freeware software that could be used as a building tool to

create a data storage system. GNU database software was chosen as the base tool

and standard C programming for building the data storage software. GNU is a

very powerful package in that it allows for remote procedure calls (RPC) to access

files and servers at multiple times. GNU also allows any type of interface to be

used as the callback design function. By using GNU, we saved months of

programming and made the software easily portable to any type of computer.

(assuming that the computer has a C compiler).

Exabyte Driver Software

The driver software became more and more complex and the operations

started to take shape. The driver not only neoded to operate from the hardware

caLls, it needed to have multiple error checking returns placed in the code to allow

the MDAS system to work correctly. Since the driver software was developed for

the 120i running on an DEC Alpha, we are not sure how the system would operate

if it were to be recompiled on another type of system running ULTRIX UNIX or

Solaris. The driver software handles only the operations of the Exabyte 120i

robotic arm. The driver software tracks errors and usage of the hardware. The

driver software will return errors if and only if the arm cannot complete it's task.

The software does not handle any maintenance of the drives or any type of error

dealing with the status of a file or errors from the 8500(2 drives themselves. The

driver software is truly the hardware coding for the driver arm only.

Interface Software

From the fhst conception of the data system, Motif Xwindows has been the

primary window interface (relying on Widget Create Library calls (WCL) to

develop and managethe windowing interface). WCL is freewaredistributed

through anonymousftp at MassachusettsInstitute of Technology(MIT). The

original code wasdevelopedfor Sun workstationsusing Xll version R5 for

Motif. UsingWCL asa GUI builder allows C programmingcodeto bepassed

intocallbacksthatinternarekeyedthroughWCL bytheuseof buttons, puUdowns,

etc. WCL allows full access to an applications defaults file (Figure 3). This file

controls the colors, design, and placement of windows. This application defaults

file allows the windowing design to be flexible for the implementation of the

interface.

l0

Implementation of System

Hardware

Our hardware did not arrive until the beginning of 1994 ,putting us eight

months behind schedule. The first piece of equipment to arrive was the Exabyte

120 along with two Exabyte 8500C drives. The 120 was originally thought to

operate exactly like a test Exabyte 10i unit we had based the driver software

operations on. We found that there were a few changes that needed to be

implemented to make the 120i work correctly. This meant using a self diagnostic

software system to track the calls from the Alpha (a lab loaner machine) to the 120.

Through the use of this tracking software, we could see the error messages and the

calls that were being passed to and from the 120 allowing us to correct the driver

software bugs. The task now became one of tweaking the CAM calls for the 120i

to allow it to operate correctly.

The original DEC 3000/400 machine was backordered for over 6 months

and Digital decided to give us their newest machine, a DEC 3000/600. The 600ds

is even faster than the 40Ods (a 600 runs at a clock speed of 150) allowing us to

operate more efficiently. As we started hooking up all of the hardware, we found

complications in that the Turbo Channel did not work (as previously mentioned).

In addition, our two new alphas were delivered without an operating system and we

needed to f'md a version of Open Software Foundation (OSF).

ll

Software

Operating System Software

OSF is the latest type of operating system to be used by the Alphas. It

allows for complex calls with the versatility of other operating systems (at least, this

is what we were originally hoping for). What we found was that OSF should not

have been released. Throughout the past five months, each machine has been

loaded with a completely new operating system five times. The fh-st version to be

loaded was version 1.2, followed by version 1.3, then version 1.3B, then version

2.0, and finally version 2.0 revision 250.

Version 1.2 would not allow for any SCSI cam operations. Each time a

drive was attached to the Alpha, the system would crash. There was to be a fix for

this in version 1.3, but again, we could not get any CAM interfaces to operate.

Version 1.3B finally fixed the CAM errors and allowed the driver software as weU

as the Exabyte drives to operate correctly. All of the interface software uses Motif

X libraries being called from WCL. WCL would not compile on any version prior

to version 2.0. Digital first claimed it was our software and not a problem on their

part arid that other groups were using Motif on the Alphas without any trouble. At

this point ,these groups were contacted and none of them had got_n Motif working

correctly.

Through DBX tracking, we found that Motif was crashing before it ever

got to main. This meant that it was a memory problem. We sent the error message

to Digital and after a week of review they reported that there was a malloc problem

and that it would be corrected in version 2.0. We now purchased version 2.0 and

with minor changesto theWCL codewe wereableto get thesoftwareworking

correctlyandthe interface brought up it's first windows.

The other side of the coin was that what problems Digital had solved in

version 2.0, they created new problems in the CAM area. Again, our drives

became useless, and the driver arm would crash each time the machine was

rebooted. Digital was again approached and we found that all of our complaints

would be corrected in version 3.0. At this point, we could not wait. The data

system was off-line and needed to be operational by mid summer. It was then

decided to run one Alpha with version 2.0, to run the windows interface, and the

other with version 1.3b, to run the Exabyte 120. This is not the best scenario but

time constraints make for drastic decisions.

12

Driver Software

The driver software was developed at the University of Colorado (CCAR)

to actuate and monitor the robotic arm in the Exabyte 120. The 120 did not come

with any typeof softwaretodrivethearm or intrinsicfunctionstouse the 120 as a

store and retrieve data system. The driver needed to be able to position the arm in

the correct position to pick out a tape and place the tape within the 8500C tape

drive. Coding for this operation meant getting into the HEX stream of the machine.

The robotic arm is belt driven and counts rotations on a spindle gear to determine

the location. The base system knows of a home position and uses an optic sensor

tolocatepositionswithinthe 120. Knowing thesepositions,theroboticarm isable

tocontinuouslyknow it'sposition.Ifthedriverarm loosesit'sposition,the base

coding willresetthe arm and returnitto home and put the arm intoa configure

mode toopticallyfindthe setlocationpointsand the drives. The 120 willalso

reset itself automatically every 80 calls. This reset caused difficulty for the MDAS

system which interpreted this as an error. This reset is set by Exabyte and is not

ableto beoverridden or the duration changed. During this process, the 120 is off-

line and no calls can be made to the unit. Once the arm is through finding all

internal positions, it will continue to finish jobs placed through MDAS.

The coding to run the arm is written is C and relies on SCSI/CAM

commands and returns. Being Common Access Method (CAM) specific, the calls

are simplified and but since CAM is not an industry standard each call is specific to

OSF 1.3B, making the driver only operational on an Alpha running OSF 1.3.B.

Each command in SCSI must return a 0 or a 1 for completion or error. If an error

is sensed, the driver code will flU out a data structure to interpret the error and place

that error in the user error file (uerO located in the root directory on the Alpha.

At this point, the driver software has failed to be operational on OSF

version 2.0 or version 2.0 revision 250. Researching through Digital support has

found that these versions do not understand what type of SCSI drives are attached

to the computer. Because the CAM commands to Sleep, SleepLock, SleepUnlock

all come from one library call (PRDVIS.MPL), version 2.0 or higher causes a

reboot each time this type of call is placed to a tape drive. As of this time, it is a

mystery as to the cause of the system crash, but Digital has informed us that with

version 3.0 this will be corrected.

13

Interface Software

To contend the time constraints on the MDAS system, the entire user interface was

developed using a DEC 5000 personal computer with WCL and the Motif X 11 R5

libraries installed. The interface windows were operational in this environment and

were ready to be ported to the Alphas as soon as they arrived. What we were not

ready for was the problems that developed trying to port WCL to the Alphas. The

first time WCL was installed it would core dump and cause the full operating

system to be rebooted.

After a hit andmissapproach,we foundthat wecould compileWCL by

compilingthesubdirectoriesMR/and AR/separately.After reviewof theWCL

sourcecode,we found that ARI was not being usedfor any of our type of

windowingandwasnot needed.At thispoint we removedall of the links to AR/

andcompiledWCL usingMRI only. With WCL compiled,we startedto port the

interfacesoftwareontotheAlphas.

At this point, we startedto get operationerrorsin trying to managethe

interface. As discussedbefore,thewindowswerecrashingbeforemaincouldbe

initialized.Thismeantthatthememorywasnotbeingallocatedcorrectly.Malloc.h

isafile thatcontrolsthesizerequirementsfor memory.This file iscontainedin the

includefiles for theoperatingsystem(OSF). As mentionedabove,wedolt with

Digital on this problemand found that our operatingsystem would need to be

reinstalled to version 2.0 revision 250 for our memory problem to be corrected.

This meant reinstalling yet another operating system and reinstalling WCL.

After the new operating system was reinstalled, we found that the interface

windows were able to get past main but would crash before the parent window

could be initialized. We started from scratch and reviewed all of WCL Since

WCL is freeware and we were installing on a machine that was new, there was

absolutely no help from MIT, Digital, or other users of WCL. After a lengthy

review we found that in WCL the operations rely heavily on the passing of integers.

As WCL passes integers it expects to have integers returned. By returning an

integer, this could mean returning an integer pointer or a long. We found that we

needed to cast the integers to a long and this corrected WCL errors and allowed the

WCL to operatecorrectly.

Itshould be noted thatOSF isextremely picky on the types of pointers,

characterpointers,integerstructuresand castingsthatam in code not originally

writtenon or for the Alphas. This selectivitycaused hours of delay in tryingto

compile code for the Alphas, especially those codes that axe integer dependent.

With WCL running correctly, the window interface was able to operate on the

Alpha running OSF version 2.0 revision 250. It is our conclusion that WCL will

not run on any other version of OSF with the possible exception of version 3.0

which is due to be released next month.

15

System Operation

Interface Windowing System

The interface for the MDAS system was developed to operate with simple

window commands. Through the experience gained with the previous navigate

systems, users required windows that were easily understood and easily operated.

The initialization of the system requires a user to set up an xhost relationship

between his or her computer and the gateway Alpha. This is a simple UNIX

command

(>>xhost <gateway>).

Once the users machine returns the accept message

(<gateway> added to access control list)

the user can then telnet to the gateway computer with again a simple telnet command

(telnet <gateway>).

At this point, the gateway computer will ask for the login name of the user.

The gateway computer is set up to use a single user and password for all users.

This allows for multiple users without having to manage each single login. The

user types in the login name and gives the password to the gateway computer.

Once a user has been given access, aU control options are defaulted and the user

will not be able to break into the system. The gateway computer win ask the user

for the name of his or her computer. The response can be by Internet protocol

number or by host table name. This request serves two purposes. First, the

gateway computer initializes the windows to be transferred to the users computer.

Second, the security file is getting the name of the machiae that is being served.

Once the security file has been updated by the login response, it looks at the

user name and machine from the register file and the xhost request. If there is a

match then the user is allowed to continue. If there is not a match the user is not

allowed access. Also at this point in time, a user is only allowed 5 navigation

requests per day. The security file tracks this and will not allow a user back on the

system for 24 hours. This security system should keep users from passing their

login information out to others and will force users to register with the system

administrator to gain access to the Navigate II system.

Motif Xwindows work in a parent child hierarchy format. The fin'st

window to appear is the main window known as the information dialog window

(exp xxx). In the beginning of the navigate system users were asked to fill in their

name, phone, and email address. Complaints were that this was too much for them

to do each time they logged into the system. Navigate II has been altered to accept

only an email address. All other information is parsed from the registration file for

each user.

The information dialog window has two buttons one to clear the screen and

allow you to retype your email and the other to gain access to the system. The

accept callback actuates the security sequence to check the parameters and to allow

the user to gain access. First the name in the email is verified as an actual user.

This check is done by scanning the register file for the email sequence. If found the

name and machine are placed into the active security file. Next, the callback checks

the xhost display that has been typed in prior to the information dialog window

being activated. If the xhost machine matches the users information then, the user

16

is acceptedanda smalldialogwindow will appeartelling theuserthattheyhave

beenacceptedandtheycan continue (Figure 4).

Once in the Navigate II system, the user can activate a menu that gives a

popup window with four choices: Search Browse, Goes Images, Programs and

Quit. The search browse button actuates the search window that must be activated

in order to continue with the AVHRR navigation process. The user must f'u'st

decide what latitude and longitude to center the search. Other options for the search

include: starting and stopping time interval and which satellites data should be used.

If the user does not know the latitude or longitude of the area but of a major city

near the area of coverage, a pulldown window can be activated from the cities

button to reveal some of the major cities within the coverage area. By selecting a

city the latitude and longitude dialog text widgets are filled with the correct values

(Figure 5).

Once a search is activated, the DoSearchCB will go out and evaluate each

browse image and create a file that will contain the name of each browse image that

has the search coordinates, time flame, and the satellite(s) selected (Figure 12).

Once the system is finished, the SearchCatalogCB is activated to reveal the file

names through a popup scrolled window (note: this also puts the list of the files in

the navigate fileList popup window) (Figure 6).

When the user clicks on the file name, the ViewCB is activated to allow the

browse image for that name to be displayed (Figure 13). This callback requires the

use of the colors.e and colors.h files to allow the image to be placed within the

window widget and to be viewed on any type of computer (Figure 1). The images

are preprocessed, low resolution images and are viewed by use of a greyscale

colortable. At the bottom of the viewing window are three buttons: one button

returns you to the browse list that was generated by D_earchCB, the next button

activates the navigate window, and the third is a quit button.

17

The navigatewindow is the most complexwindow in the Navigate II

systemdueto theoperationsthat maybeactivated.Thewindow can spawn four

process commands. The f'urst grabs the parameters in the window and used this

information to create the navigation command line (filename, latitude, longitude,

range, channels, and zenith angle). The second is a command line mated to access

the MDAS system (filename, and return path). Along with the navigate and MDAS

commands, there are two other spooled processes that must be held in memory until

the navigation process is complete. These processes produce an overlay map and

scale a two byte image to an eight bit image. This one navigal_ window has a total

of 7 callbacks associated with its operation (Figure 7).

Once a navigation process has be_n started, there is no way for the user to

append or quit the external process. This feature was designed into the system to

not allow files to be deleted from the queue table in MDA$ until the MDAS system

clears its files in the correct sequence (to be discussed further in the MDAS

section). The time an order is placed to the time a finished image is delivered to the

FTP directory is less than 10 minutes -- three to four times faster than the original

Navigate system.

To retrieve a f'fle from the 120 and place the AVHRR data f'tle onto a

designated hard drive takes less than 5 minutes (time is based on retrieving a 130

megabyte file located at the end of a 40 file tape). The longest period of time

involves moving the data file to the navigation drive for processing which takes 4

minutes. The current navigation code that is mrming on the Alpha has been

modified for the MDAS system and will navigate the AVI-IRR data file in less than

60 seconds.

Users may only request 5 navigations per day. Since we have not been

able to test the full load scenario on the Alphas, the number of navigations may

increase or decrease depending on the usage load placed on the computers. Once a

18

userhasf'mishedhis or herrequests,thesystemwill automaticallybuild anFTP

directoryundertheusersnameandplacetheorderedimagesfrom theirrequestsin

thatdirectoryfor theusertopick-up(Figure 8).

The GOES callbacks only allow the viewing of a preprocessed full disk

image. The GoesViewCB is similar to the ViewCB used in the AVHRR browse

image in that a scrolled list of GOES images are set active by the double clicking of

the mouse button and they are viewed in a manner similar to browse (Figure 9).

The actual ordering of the GOES images is drastically simplified in that no

processes must be actuated and the file is simply movod into the users FTP

directory. All of the GOES images are placed on-line on a rotating basis whe_ one

weeks worth of data is placed on a single hard drive. The oldest file is replaced by

a new file. In this fashion we can keep a full week period on-line at one time.

The programs callbacks again only place a selected file from a scrolled list

window into the appropriate FTP directory (Figure 10). Both the GOES and the

program's callbacks must track the users name and ordering sequence.

19

MDAS System

The Meteorological Data Archiving System (MDAS) was developed to track

and retrieve the AVHRR files for the navigation process. MDAS is solely written

in GNU database software and C coding. GNU simplifies the calls and allows a

flexibility in porting the code to other computer platforms. GNU is freeware and is

distributed to Internet users for the development of software products.

MDAS relies solely on remote procedure calls (RPC's) where the client

Alpha makes calls to the MDAS server Alpha which in turn stores and retrieves

files within the 120. The MDAS server, and storage devices may all reside on

different machines. The RPC mechanism takes care of the system calls used in

network communications and the details associated with the data format

conversions between the Alphas. The RPC calls, for storage and retrieval, are sent

from the interface windows application process to the MDAS server where they are

queued. The MDAS server then makes its own RPC calls to a device daemon,

which runs the driver software to retrieve or place a tape for the file transfer.

Setting up the MDAS system requires starting the MDAS daemon as well

as a daemon for the device driver. Both of these daemons run on the server Alpha.

A MDAS server / client relationship must be executed on each client computer to

have access to the MDAS system. This is formatted by each client knowing the

Internet Protocol number of the server and the server identifying which computer is

making a call. The MDAS system uses the RPC calls to: load_new_tape,

unload tape, loadtape, lock_loader, unlock_loader, and lock_unlock_database.

If for any reason an error occurs during any process of the MDAS in either

a device, or internal error, the MDAS system locks (through the data base)

whatever resources it was using (a drive or robotic arm), essentially freezing that

part of the system. MDAS then mails the system administrator a message

explaining the error and it is then the system administrator's responsibility to

correct the problem and restart the system. Until we gain more experience on the

MDAS system, it is better to freeze the system than to try and recover from an

unknown error and risk corrupting the database or contents of the tapes.

Both the server and the device daemons also write time-tagged error

messages to stderr or stdout, which is redirected to a file when starting the server

and device daemons. Chnrenfly, MDAS handles the following errors:

dd errors on a read or write to tape; which could be from a bad tape, a disk being

full, a hard disk failure or a drive failure. Second, if a tape is not found in the

correct slot. For this to occur, an error was made on the operators part. The data

system knows of each tape from the tape table and the only way a tape could not be

in the correct slot is for it to be moved outside the control of MDAS. Third, if a

2O

wrong tape header detected. Again this is a human error where the operator either

put the right tape in the wrong slot, or the wrong tape in right slot. Fourth, is a

loader arm failure. Though MDAS is capable of capturing this error, the 120's

robotic arm does not return any type of error message. The MDAS system will

continue on the assumption the loader moved the tape as directed, until another

error occurs, which will either be the file set error returned by the tape device

driver or a dd error. Fifth, the drive fails to rewind and eject a tape. This has not

been physically tested but the drive arm should sense not being able to pick or

place a tape in the drive. Or finally, an internal database error. This is a very

serious error. The scenarios for this case to happen are that the computer has

crashed during a database file write or someone accessed a database file while it

was being accessed by the MDAS system, causing a read / write conflict. This

error is caused by a bug in the GNU database software.

The MDAS system uses the RPC calls to: load_new_tape, unload_tape,

load_tape, loclc_loader, unlock loader, and loclc_unloclc_database. To load a new

tape, the call, load_new_tape, calls a device daemon procedure which will

physically load the tape into the 120, then adds a new tape record to the tape_table

database. The system manager must first lock the loader before this call can be

initiated. There must also be a free slot in the 120 and the tape should be physically

placed in the slot before continuing. The new tape call will ask the administrator

questions about the tape, such as: What is the tape name. Will it be a read, write, or

both. Does the tape contain fries? How many files? What is the free space on the

tape? And f'maUy, which slot will the tape reside? After the tape has been ad/ted

the tape table will contain the status of the tape, times mounted, last file position,

and tape header.

Load tape is similar to load new tape except that the MDAS system already

knows the information about the tape, it just needs to know the new position of the

'l

tape.Unload_tape calls a device daemon procedure which will unload a tape from

the 120. It will then update the tape record in the tape table database. Unload-tape

changes the status of the tape table record from LOADED to NOTLOADED making

the MDAS system aware that the tape is no longer loaded in the 120. If calls are

made which required the unloaded tape, the systems administa'ator will receive a

message from MDAS telling them to load the unloaded tape so processes can

continue.

Lock_loader calls into the MDAS server daemon, and acquires sole use of

the 120 robotic arm. It waits to acquire the robotic arm from any requests ahead of

this command. Once Lock loader takes control it will create it's own queue table

record. The Unlock loader calls back into the MDAS server daemon and remove

the queue table record created by Lock_loader and signals that the robotic arm is

ready for processing. Finally, the Lock_Unlock_Data_Base is a function to enable

the operator to run the load and dump database executables safely while the MDAS

server is running and servicing requests. This locking ensures that only one

process is accessing a table at once, so that the situation where one process is

writing while the other is reading is prevented. The Lock_Unlock_Data_Base calls

to the MDAS server daemon and locks or unlocks a database table.

Lock_Unlock_Data_Base with lock type equal to 1 will block other processes

form accessing the table if it is already locked by a server process (or by an earlier

call to Lock Unlock Data Base). It will unblock once the lock is released, lock

the table itself and return. Lock_Unlock_Data_Base with lock type will equal O,

will unlock a table regardless of whether it was locked by a previous

Lock_Unlock_Data_Base or by a server process. Therefore, it is very important

never to unlock if you have not locked beforehand (for the same reasons that

Lock Unlock Data Base works by setting semaphores located in memory which

is shared between the server and it's child processes).

The MDAS system is largely a database-driven system. Six database

tables (each a binary file) axe used for storing static information about the files,

tapes, devices and owners, as well as serving as the dynamic request queue, and

the synchronization point for processing of a device resources and log history of the

steps taken by each request. The first of these data files is the queue table. The

queue table deals with only three types of requests: store a file, retrieve a file or lock

the robotic arm. The queue table tracks the driver by using two commands:

Using_Drive and Using_Loader. Both of these records track the current process

and status of the queue table.

The queue table has four waiting records: Waiting _For_Free_Drive,

Waiting _For_Free_Loader (if more than one 120),

Waiting._For_Operator_To_Load_Tape, and Waiting_For_Tape. The "Waiting

records" have status'sof nextrequestsand areheldinthequeue tableuntiltheyare

moved to the "Using records". The queue table work with the f'de and tape tables

to decide where a tape should be loaded and, if more than one 120, which arm

should be accessed.

The final records are Copy_File and Duplicate_Request. Both of these are

important in that the Copy_File works to transfer data from one tape to another.

This may happen when copying old f'des to a new tape and works in the backup

dump mode. Duplicate_Request saves the MDAS system from going arid getting a

file from tape more than one time, if it currently exists in the cache. If two users

request the same file within or about the same period of time, the MDAS system

will flag the Duplicate_Request record and will know not to retrieve the file again,

but to leave it in the cache directory so it can be processed for the second user.

The tape_table deals slrictiy with the name of the tape, owner, permissions,

default device, location of the tape, status, times mounted, amount of free space on

the tape, and the last file position. Each tape is listed by a name. It can be a user

23

24

name or any type of designated UNIX name. An owner can be assigned to a tape

(in our case the data system tapes are owned by the system). As with any file,

permissions can be set for a full tape or files on that tape. The default device

parameter works by selecting a drive specified for use and the MDAS system will

not process that tape until that specific drive becomes free. This work well in the

down loading of new AVHRR passes to the MDAS system, since one drive is

designated at certain time intervals to upload data. The location of the tape within

the 120 is important to the MDAS system for the previously mentioned reasons.

Status has also been discussed earlier in whether a tape is LOADED or

NOTLOAED. The Times_mounted parameter is important for several reasons. If a

tape has been accessed art excessive amount of time, it would be best to copy the

data to a new tape. If a tape has not been accessed at all or very seldom it might be

best to not store that particular tape in the 120. Both of these functions can be

easily accessed through the use of this parameter. The amount of free space on a

tape becomes a crucial piece of information for the MDAS system. This tracks how

many files are on a tape and how much space is available for further storing

capability. For these reasons the last_file_postion parameter is also needed to

maximize our storage capability.

The file_table tracks the filename, owner, file size, tape name, permissions,

frie position, total access, and last access. The file name is a key field. This is

what the returned file is named. The owner of a file may or may not be the owner

of the tape (example a system tape may contain Fries from several users). The file

size is used to check the dd process as well as capacity of the tape. The tape name

parameter contains what tape holds this file and where this tape is located in the

120. Permissions can be set for any f'rie to be read, write, execute or any

combination of the above for a variety of users. File position is the number of end

of frie (EOF) markers to pass on the tape b before reaching the beginning of the

file. The total access time is the total number of times the t-de has been read, plus

one for the original write. And finally, the last access time is the last time the file

was read, or the last time it was written to tape if it has not yet been read.

The owner_table tracks various administration records such as: the owner,

hosts, groups, number of tapes allowed and mailing address. All of the above are

set by the system administrator. The owner of the particular file may or may not

own the tape that the file resides on. Each user of the MDAS system may be limited

to the number of tapes they have access to and the number of tapes they can write

to. The mailing address parameter is used for system calls like: the users tapes are

full etc.

The device_table is used solely for the MDAS system to check for devices

such as the number of storage boxes (120), number of tape drives, set paths, cache

path and quota and number of tape slots. This record file will allow for the addition

of multipledevicedrivers,multiplecache directoriesand allocationsof tapeslots.

The device_tableisthefirstrecordinitializedwhen MDA$ startsup.

The history_tableisa log of allprocesses,forks,and requeststo theMDAS

system. Itisarunning log of allcommands and successfulor failedrequeststothe

system. Itdoes not controlany actionsof the MDA$ system and is strictlyan

admin/strativefile.Itshould be noted thatalltablesareoperationalinthe binary

mode. To exi/tthefilesby hand, theymust be convertedtoASCH and returnedto

binary format for the MDAS system to operate correctly.

These above database tables are the backbone of the MDAS system. With

this information that the tables provide, the MDAS system can retrieve and place

files within the 120 on a continuous and correct fashion.

The MDAS system, as previously mentioned, relies on RPC calls to operate

the GNU database software. A user interface incorporating all of these procedures

is set in the systems manager driver. This interface software will aLlow the system

25

managerto read and write to the MIDASsystemwithout usingthe Xwindows

interface.(Figure11).

TheMDAS systemhastheflexibility to addusers.Eachusercanbeaddedin

muchthesamewayasaddinga newuserto theNavigatesystem.An ID., group,

host,andhomecanall beset. Eachusercanrun hisor herown interfaceto the

MDAS systemor the systemmanagerdriver canbe modified to the individual

user'sneeds.

_6

Conclusion

Having completed the Alpha testingand throughthestartof the Beta testing,

Navigate IIhas shown to work exactlyas designed. There willalways be critics

thatsitetheshortcomingsof theoriginalNavigate system. But todate,thestorage

system has been abletoread fliesoffand navigatethem in acontinuousand timely

manner.

The only bugs found inthe system throughoutthetestingperiodhave been

minor fixessuch as thedeselectionof a textfieldwhich has caused crashesinthe

user interface. This has been corrected by not allowing a user to deselect any f'tle

until they have selected another to take its place. Ore" largest problem, to date ,is

that the OSF operating system will not allow us to use our 8500(2 drives to write

files to tape. We are able to read without error but writing causes core dumps.

Digital has been contacted and they axe sending out a fix to the SCSI / CAM

procedure calls to allow the Alpha to identify the 850012 drives and operate the calls

correctly. As soon as this fix arrives the MDAS system will be fully operational.

At the time of this paper, Navigate II system can be brought on-line without the

8500 drives being able to write (since all of our data is processed to tape on a

separate system and tapes axe then loaded into the 120). Users of the Navigate H

systemcan only acquire processed images. They do not have access to place data

on the system.

As proprietary software goes, we are not close to the average 10,000 man

hours that go into a commercial software package. However, we have developed a

low cost storage system that can be modified to stor_ any type of data in any type of

format. Interfaces can be nmdified or quickly rewritten to drive the ME)AS system

under any type of scenario. For these reasons it is hard to beat the MDAS system

running under Navigate II.

-- /

_-8

Figure 1. AVHRR Browse Image

Omk_L_d. PA_ I

OF pcz_ _rrv

29

OF IDooll itlJ_rl,Y

Figure 2. Navigated Image Centered Over Colorado

^ppL1¢a_L_n8 Defaul_s _Lle _or _svor_er

Uslng wcl iA_ra_y _o crea_e _e wlndov8

(o) 1994 TAa Kelle7

30

efsul usage As often DECO_a_Acn.

•_e_aul_Vir_ualBAndAnge: \
:sf_ac_Space: ,Eey,Dele_e

Se_=g _he Fen=8 for _he vlndove

'Pon_LAo_:oourAe_

_avor_er AO _he saell v_dge_

Navorde_.vcPopupe:

Navorder.vcChildren:

N&vorde_._i_l@:

Navorde_'foreground: yellow
Navor_e_*b&cE|round: blue

i
MeAn Vi_iov For |-8a_LI

Navorde_'u&Anv_n.voCl&lo_amo:
_&vor_e_eu&A=gi_.voChild_e_:
N&vO_do_e1_A=_i_.wi_h:
N&vo_do_'esJ.nVin.hei_h_:

accep:Dialo|, bruLA8:, fileLAs:, goesLis_.
pro|Ll8:, vor_lngDialo|, ci_7LA8_
a&invln, nevVin, |oesVln, browoevin, \
seaxch_in

_avi|a:e P_o:o_y1_e Oyezes

XaMaAngindov
aenu_e_. _able
%00
gO0

I

I
N&vorde_eaen_t_Ik_.voCo_e_x'_o_oY: XIICx'e&_eNe_Be._
_svorde:'nenu_e_.voChAl_en: f_le_enu, f_Io. help

!
I File Menu Moaners

_&vO1"d[eEeflllle::._OVle.11_elO_M_OL_--
&vocde'fllel/enu.b_ovee.ao_vs_eCKl_:

_&voz_Le_,flle_ien_.|oeo.voClaoe_eae:
avom'tlleMeau.|oeo.la_elS_in|:

X,al_ehJ_on
$&_ B_ovae Po.J8
B
v_Mana|eCB('eee_hVln)
_aJ.se

XaC_ee_eOepe._&_o_

XmPsasbJ_on

GO|8 IaaJe

I
t M_A_ Tld_le
l
_avorde_e_aJ:le.voCl&Je_eaJe:

&vo¢de'¢able. Layou_:

X.npTaJ_Io

oriel1, eJ_z\
_A_Io 0 0 10 1 _K:\
&ooo_on 1 12 a 1 _S;\
clee_Bu_on ? laa 1 _;\
ea_Al 10 I I]_,;\
e_z a O 7 1 h:

Figure 3. Applicadol DetN/U File

olqk_lN,_L PA(]qE f8

eua, L,n,y

3t

_N._L PA_E AL

Flgure 4. lnfomation Dialoll Window

3".

Figure $. Browse Search Window wi_h Cities List Popup

Q_INA/. PA@Ep8
O_ _ QU&LC,y

_3

OIMqAL PA_ m
OF PO0_ q_Ln_ Figure 6. Browse Search Window with Brs List Popup

34

Figure 7. Navigate Window

O#1i_illNbM.PAOEI I

_ ¢m'oo_QUMU'I'q

35

_! (ccuind._al_l[0l -- 'y')
(

/' pu_ _ollthiI dii_lni_lon dlt "I
_O8_dll - (C_lle)01110O(i_rlii(_0/.dll_) +

i_rlii(o0/,ll) - 5, llliOf(chl_));

spr_n_f(_il_dll, "lltl4", oo/,_ii_. CQ.m/,_ishu);

i" MAil lu_o _OIt_ll OXlltl "I

if (i_l_(_Olldli, IcLirS_it) -- O)

(
t, It ezlI_l, ilia IUlO l_'l • _lilototy '/
_f (t(_lrS_it.it_lo4i I $_ZFDIi))

(

I
I

ollo
(

{
/o II A0til'l tXtil. Oiilti 1I "t

_f (Ii_i(4iltdli, 0758) , O)

(
re_urn;

t
t

Illl
(

iiluln;
I

}

/" It vii lulio 1_ _lliou|h ill of _llll, doilaJ._ is • (Ll.:o_:oi'_ "/

/' oo1_ tiles _o t_o FTP lies "/
owl . (o_tai' .)olilioo(lt=ion(oolumiid,.lim|oitol)

ii_ion(doli4J.i) * 10, 81zeo/Cilli&i'));

itCCiliIoaCoolala4.dai_il)) -- o)

ep=inlt(ca4. "nv li.°.i8 Is °, ooaaalui.lalleilis, dilld1=):
else

spill_f(_. "iv ltl." is', oolmalii.ilul|ea_ell. 4el_=);

811tea(1):

Fillurl 8. FGIT Directory Codinll

O_3_PC_L PA_E q

Figure 9. GOES Browse Image

37

Figure 10. Programs Scrolled List

O#11OJNAL PAOE II
olr poow (._a._

38

O_Odl_d- PA_E

Figure 11. MDAS
Interface

39

voli _oSearc_CB(Wi_ge: v. X_Po!n_er client. X_Poln:er call)

/0 _O_ _he 8eo_ch i_for1&_ion '/

_uf - I.mTex_FieldGe_S_rln|(wcPull_amoToli_|e_Cv, ''seLrc_In._s,ble.l&_Tex_"
/" conver_ Co flea, in| poln_ "/

p&raJte-,l&_ - a_of(buf);
/" Pu_ l&_l_u_o _ex_ flel_ in n&vlt&_ion vi_ov "/

ImTex_PieldSe_S_rln|(voFullNtJneToVid|e_{v, "'n&vvin._e_io.l&_Te_'), _uf);

/" free _ffo_ 8p&ae e/
X_Free{buf):

/" verity inpu_o_ 8ee_roh infor_ion '/

/0 Re& _ _e 8rOVle C&111o| fLle '

lfCflle_loo4)
{

flle_on_ - filo_on_ + 1;
brovso_le = {o_8ue ,)Z_CLlloo(n_rlenCn&voT4erBoeou:oee._roveeOi:) .

e:_lenCnma) * s. a_zoofCo_));

8prln_f(_rovme_ilo. "_8/q_*, n_vor_erRejo_uroei.brovooDlz. _n,_eS);

/" chloe _0 SOl if l&_/lon coordinate is in _]_.l tile */

If(ooor__o_e_C_oveeFile.pa_ems-,l&_,p_m-,lon))

{

/o tile i| |oo_ -- ou_1_t filonlme _o i_en lil_ '/
filel_ens(_n/_enllrl_e] - {ch_i_ ')n_IIo_(BU_PBReIZR • 81zeof(ch_))

o_r_py(fllol_ell[nuaI_enlV_i_e].n_dJoS):

}
)

/* b:1n| up b:Ovml lil_ vln40v "I

fp:ln_f{i:d,:_.'b:_nl_n| up brollsS vinaov\n'):
Z_Ums|eCbJAa(VoF_llXsaeToVla|e:(v. "o_:8LIe:')):

Figure 1_ DoSesrchCB CocUn!

(3_GINAL PAGE I_

4O

vo_i v_ewCB_w_e_ v. x_PoA_e_ client. X_Poln_er call)
{

/" Go_ na_e of file seloo_ed "/

X_VaC, e_Valuee(WoFull_e_eToV_d|e_(v. "'breLie_.eorollie_').

Xa,,qmeleQ_edZ_ea_. Widens, _J.);

X_S_r_n_Ge_L_oR(I_eme[OI, XaST_I_G_DIFAULT_CEAReET. _refilenaae):
ps_ - (c_az)X_C&Iloo(e_=Ien(IROVSZPATZ) + e_len(_refilenaae) *

slzeof(aha_));

spr_ncf(pa_h. "_el_e', SROVSRP&TH. b_efilena_e)

• Open =he file "/

• Ree4 in =_e Dale "/

&hale - Vc_ullSa_eToVAd|e_Cw. "'b_veevla'laafe'):
_f(laa|e -- _ULL) (

/. Cre&_e _he la&|e wld|e_ '/
X:vaCre_:e_aaa|e_Vld|e_('_aa|e'. 8_olaa|ev_d|e_Clu8.

ve_u11_eaeToV_dge_(v. "'b_ovee_£a'breLaa|eFrue_

X_Nl.na|e_el|h_, he_|h_,
X_v_|ual_n_o. be_olnfo-,vi_ualInfo,
X_=eePlxele, bul_Info-,=ee_lxele,
X_Nn_d_eePl.xole, _e_J_oZn_o-,nu.nKeePixele.

X_ana|oChAld(VoFUllJ_e_aeToV_d|e_(v, *'b_oveeV_n')):
vle_CB(v, ellen,, oe_,1):

) else (
/" Use X_VLee_Vt_uoe "/

Fl|ure 13. VlewCB Codln|

_LAI. PA_E P_

41

im

exO

3000

2500

2000

1500

10130

500

Growth Of Registered Users
I I i I I I I t _ t

I I I I I I I I I I !

D¢¢91 Apt92 Aug92 Dec92 Apt93 Aug93

Date

42

160

140

loo

_'1 40
0

2o

• Mow_|y Regiaum_ U_

New Registered Users

_3

1.000 10`4

8OOO

 ooo
E-

2OOO

0

Total AVHRR Images Shipped
i I i t I i l I I I I

Dec91 Apr9'2 Aug92 Dec92 Apr93 Aug93
Date

44

1000

80O

400I.,i

20O

0

Monthly AVHRR Image Orders

I I L l I 1 I

Dec91 Apt92 Aug92 Dec92 Apt93 Aug93

Date

_5

t000

Megabytes Of Data Sent Over The lnternet

I[
20O

46

1000

Orders For Raw Data From Sanddunes

800

600

40O

200

0
Nov 91 Jan 92 Mar 92 May 92 Jly 92 Sep 92 Nov 92 Jan 93 Mar 93

Months

Figure. 3

47

Megabytes of data

_7
t_ |

I
i

\
\

I

I

0

I_1 III

ft
IW

_8

_6

_I|_ll_

-- i_oo_

0

49

50

(]A_INAL PAGE l_

OF Iq:_m QUNJI"_'

5l

°,

48

116_:[,-2_. - 108

ORIGINAL PAGE

oF pooh _

52

53

I Form Approved
REPORT DOCUMENTATION PAGE OMBNoo;'o4-olo8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering

and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite

1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 6, 1994 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Land-Surface Testbed for EOSDIS

6. AUTHOR(S)
William Emery and Tim Kelley

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Colorado

CCAR, CB 431

Boulder, CO 80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration - HQ/OSSA

Washington, D.C. 20546-0001

Universities Space Research Association

10227 Wincopin Circle, Suite 212
Columbia. MD 21044

11. SUPPLEMENTARY NOTES

93O

8. PERFORMING ORGANIZATION
REPORT NUMBER

NAS5-32337

5555-07

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

CR-189392

Technical Monitor: J. Hollis, Code 930

12a. DISTRIBUTION/AVAILABlUTY STATEMENT

Unclassified-Unlimited

Subject Category 82

Report is available from the NASA Center for AeroSpace Information, 800 Elkridg¢

Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum200 words)

The main objective of the Testbed project was to deliver satellite images via the Internet to scientific and educational users

free of charge. The main method of operations was to store satellite images on a low cost tape library system. Visually

browse the raw satellite data. Access the raw data filed, navigate the imagery--through "C" programming and X-Windows

interface software--, and deliver the finished image to the end user over the Internet by means of file transfer protocol

methods. The conclusion of this project is that the distribution of satellite imagery by means of the Internet, is feasible, and

the archiving of large data sets can be accomplished with low cost storage systems allowing multiple users.

14. SUBJECT TERMS

Computerized Archiving, AVHRR, Navigation

17. SECURITY CLASSIRCATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

53

16. PRICE CODE

20. UMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
PrR_rlh_d hv ANRI Rtrl. '_R_-IR. _IFt-IN2

